نتایج جستجو برای: gorenstein injective module
تعداد نتایج: 70366 فیلتر نتایج به سال:
Gorenstein n-X -Injective and n - X-Flat Modules with Respect to a Special Finitely Presented Module
Let [Formula: see text] be a ring, class of text]-modules and an integer. We introduce the concepts Gorenstein text]-[Formula: text]-injective text]-flat modules via special finitely presented modules. Besides, we obtain some equivalent properties these on text]-coherent rings. Then investigate relations among text]-injective, text]-flat, injective flat text]-rings (i.e., self rings). Several k...
The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...
Let $R$ be a commutative Noetherian ring. We prove that over a local ring $R$ every finitely generated $R$-module $M$ of finite Gorenstein projective dimension has a Gorenstein projective cover$varphi:C rightarrow M$ such that $C$ is finitely generated and the projective dimension of $Kervarphi$ is finite and $varphi$ is surjective.
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra A $A$ with radical J $J$ will be said to short provided 3 = 0 $J^3 0$ . As case, we show: If a has an indecomposable non-projective Gorenstein-projective module M $M$ , then either is self-injective (so that all modules are Gorenstein-projective) and then, of cou...
In this note, we introduce the notion of Gorenstein algebras. Let R be a commutative Gorenstein ring and A a noetherian R-algebra. We call A a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]), add(D(AA)) = PA, where D = HomR(−, R), and Ap is projective as an Rpmodule for all p ∈ Spec R with dim Rp < dim R. Note that if dim R = ∞ then a Gorenstein R-algebra A is p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید