نتایج جستجو برای: insp

تعداد نتایج: 344  

2012
Horia Vais J. Kevin Foskett Ghanim Ullah John E. Pearson Don-On Daniel Mak

The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic ret...

2009
Neha Agrawal Nisha Padmanabhan Gaiti Hasan

The Inositol 1,4,5- trisphosphate receptor (InsP(3)R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP(3) signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP(3)R (itpr) gene. Here, we show that g...

Journal: :American journal of physiology. Gastrointestinal and liver physiology 2012
Hyung Seo Park Matthew J Betzenhauser Yu Zhang David I Yule

Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we...

2014
Chiu-Yueh Hung Peter Aspesi Jr Melissa R. Hunter Aaron W. Lomax Imara Y. Perera

The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol pol...

Journal: :Molecular and cellular biology 2000
H Chi X Yang P D Kingsley R J O'Keefe J E Puzas R N Rosier S B Shears P R Reynolds

Multiple inositol polyphosphate phosphatase (Minpp1) metabolizes inositol 1,3,4,5,6-pentakisphosphate (InsP(5)) and inositol hexakisphosphate (InsP(6)) with high affinity in vitro. However, Minpp1 is compartmentalized in the endoplasmic reticulum (ER) lumen, where access of enzyme to these predominantly cytosolic substrates in vivo has not previously been demonstrated. To gain insight into the ...

Journal: :The Biochemical journal 2003
Alan P Dawson Edward J A Lea Robin F Irvine

The release of Ca(2+) from intracellular stores via InsP(3) receptors shows anomalous kinetics. Successive additions of low concentrations of InsP(3) cause successive rapid transients of Ca(2+) release. These quantal responses have been ascribed to all-or-none release from stores with differing sensitivities to InsP(3) or, alternatively, to a steady-state mechanism where complex kinetic propert...

Journal: :Molecular pharmacology 2001
V Correa A M Riley S Shuto G Horne E P Nerou R D Marwood B V Potter C W Taylor

Adenophostin A is the most potent known agonist of inositol 1,4,5-trisphosphate (InsP(3)) receptors. Ca(2+) release from permeabilized hepatocytes was 9.9 +/- 1.6-fold more sensitive to adenophostin A (EC(50), 14.7 +/- 2.4 nM) than to InsP(3) (145 +/- 10 nM), consistent with the greater affinity of adenophostin A for hepatic InsP(3) receptors (K(d) = 0.48 +/- 0.06 and 3.09 +/- 0.33 nM, respecti...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 2009
Tie-Shan Tang Caixia Guo Hongyu Wang Xi Chen Ilya Bezprozvanny

Huntington's disease (HD) is a dominantly inherited, progressive neurodegenerative disease caused by an expanded polyglutamine tract in huntingtin protein (Htt). Medium spiny striatal neurons (MSNs) are primarily affected in HD. Mutant huntingtin protein (Htt(exp)) specifically binds to and activates type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1), an intracellular Ca(2+) release chann...

Journal: :Plant physiology 2000
J Martinec T Feltl C H Scanlon P J Lumsden I Machácková

It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the binding of D-myo-inositol 1,4,5-trisphosphate (InsP(3)) to a receptor located on the endoplasmic reticulum (ER) triggers an efflux of calcium release from the ER. Sites that bind InsP(3) with high affinity and specificity have also been describe...

Journal: :American journal of physiology. Lung cellular and molecular physiology 2000
C M Yang W B Wu S L Pan Y J Tsai C T Chiu C C Wang

Extracellular nucleotides have been implicated in the regulation of secretory function through the activation of P2 receptors in the epithelial tissues, including tracheal epithelial cells (TECs). In this study, experiments were conducted to characterize the P2 receptor subtype on canine TECs responsible for stimulating inositol phosphate (InsP(x)) accumulation and Ca(2+) mobilization using a r...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید