Let G be a graph of order n with (0, 1)-adjacency matrix A. An eigenvalue σ of A is said to be an eigenvalue of G, and σ is a main eigenvalue if the eigenspace EA(σ) is not orthogonal to the all-1 vector in IR. Always the largest eigenvalue, or index, of G is a main eigenvalue, and it is the only main eigenvalue if and only if G is regular. We say that G is an integral graph if every eigenvalue...