A spacelike surface in Minkowski space $\mathbb{R}_1^3$ is called a $K^{\alpha}$-translator of the flow by powers Gauss curvature if satisfies $K^{\alpha} = \langle N, \vec{v} \rangle$, $\alpha \neq 0$, where $K$ curvature, $N$ unit normal vector field and $\vec{v}$ direction $\mathbb{R}_1^3$. In this paper, we classify all rotational $K^{\alpha}$-translators. This classification will depend on...