نتایج جستجو برای: k upper domatic number

تعداد نتایج: 1655390  

Journal: :Australasian J. Combinatorics 2012
S. Arumugam K. Raja Chandrasekar

The domatic number d(G) of a graph G = (V,E) is the maximum order of a partition of V into dominating sets. Such a partition Π = {D1, D2, . . . , Dd} is called a minimal dominating d-partition if Π contains the maximum number of minimal dominating sets, where the maximum is taken over all d-partitions of G. The minimal dominating d-partition number Λ(G) is the number of minimal dominating sets ...

Journal: :Discrete Applied Mathematics 2010

Journal: :Mathematica Bohemica 1991

Journal: :Applied Mathematics Letters 2010

Journal: :Journal of Mathematics 2023

Domination is a well-known graph theoretic concept due to its significant real-world applications in several domains, such as design and communication network analysis, coding theory, optimization. For connected ? = V , E ...

Journal: :Discussiones Mathematicae Graph Theory 2018
Saieed Akbari Mohammad Motiei Sahand Mozaffari Sina Yazdanbod

Let G be a graph. A total dominating set of G is a set S of vertices of G such that every vertex is adjacent to at least one vertex in S. The total domatic number of a graph is the maximum number of total dominating sets which partition the vertex set of G. In this paper we would like to characterize the cubic graphs with total domatic number at least two.

Journal: :EJGTA 2015
Seyed Mahmoud Sheikholeslami Lutz Volkmann

A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...

Journal: :SIAM J. Comput. 2009
Andreas Björklund Thore Husfeldt Mikko Koivisto

Given a set N with n elements and a family F of subsets, we show how to partition N into k such subsets in 2nnO(1) time. We also consider variations of this problem where the subsets may overlap or are weighted, and we solve the decision, counting, summation, and optimisation versions of these problems. Our algorithms are based on the principle of inclusion–exclusion and the zeta transform. In ...

Journal: :Discrete Applied Mathematics 2009

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید