휂-Ricci solitons on Lorentzian 훽-Kenmotsu manifold are considered an manifolds satisfying certain curvature Conditions, R(ξ,X).S=0, S(ξ,X).R=0, W2(ξ,X).S=0,S(ξ,X).W2=0 We proved that in β-Kenmotsu (M,φ,ξ,η,푔). Then the existence of implies M is Einstein and if Ricci tensor satisfies, then steady. If condition 휇=0, 휆=0, which shows 휆is steady