نتایج جستجو برای: lagrange interpolation
تعداد نتایج: 43412 فیلتر نتایج به سال:
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
We continue the investigation initiated by Mastroianni and Szabados on question whether Jackson’s order of approximation can be attained by Lagrange interpolation for a wide class of functions. Improving a recent result of Mastroianni and Szabados, we show that for a subclass of C functions the local order of approximation given by Lagrange interpolation can be much better (of at least O()) tha...
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
4 Discretization using Polynomial Interpolation Consider a function to be a continuous function defined over and let represent the values of the function at an arbitrary set of points in the domain Another function, say in that assumes values exactly at is called an interpolation function. Most popular form of interpolating functions are polynomials. Polynomial interpolation has many important ...
In this paper a parallel algorithm for Lagrange interpolation is applied on a n-pancake graph. The npancake graph is a Cayley graph with N=n! vertices and with attractive properties regarding degree, diameter, symmetry, embeddings and self similarity. Using these properties the algorithm carries the calculation in O(N) steps of communication and arithmetic operations instead of O(N) steps for a...
We apply multivariate Lagrange interpolation to synthesizing polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore genera...
Let Ln [f ] denote the Lagrange interpolation polynomial to a function f at the zeros of a polynomial Pn with distinct real zeros. We show that f − Ln [f ] = −PnHe [ H [f ] Pn ] , where H denotes the Hilbert transform, and He is an extension of it. We use this to prove convergence of Lagrange interpolation for certain functions analytic in (−1, 1) that are not assumed analytic in any ellipse wi...
In 1918 Bernstein [2] published a result concerning the divergence of Lagrange interpolation based on equidistant nodes. This result, which now has a prominent place in the study of the appoximation of functions by interpolation polynomials, may be described as follows. Throughout this paper let / (* ) = |x| (—1 < x < 1) and Xk,n = 1 + 2(fcl ) / ( n l ) (Jfe = 1,2,... ,n; n = 1 ,2 ,3 , . . . ) ...
For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some weighting factor ? We obtain a necessary and su¢ cient condition for ...
Let f be analytic on the compact set E ⊂ C , of positive transfinite diameter and let Cr denote the largest equipotential curve of E such that f is analytic within Cr. Generally, the growth of an entire function is measured in terms of its order and type. Here we have established the relations between maximum modulus, maximum term and interpolation error of best uniform approximation to a funct...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید