نتایج جستجو برای: lanczos bidiagonalization
تعداد نتایج: 1448 فیلتر نتایج به سال:
The computation of a few singular triplets of large, sparse matrices is a challenging task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to address this problem through variations of the Lanczos bidiagonalization method, but they are still challenged even for medium matrix sizes due to the difficulty of the problem. We propose a nov...
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
The computation of a few singular triplets of large, sparse matrices is a challenging task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to address this problem through variations of the Lanczos bidiagonalization method, but algorithmic research is ongoing and without production level software. We develop a high quality SVD software...
We present a class of algorithms based on rational Krylov methods to compute the action generalized matrix function vector. These incorporate existing Golub-Kahan bidiagonalization as special case. By exploiting quasiseparable structure projected matrices, we show that basis vectors can be updated using short recurrence, which seen generalization case bidiagonalization. also prove error bounds ...
The computation of a few singular triplets of large, sparse matrices is a challenging task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to address this problem through variations of the Lanczos bidiagonalization method, but algorithmic research is ongoing and without production level software. We show that a more efficient, robust,...
The L-curve criterion is often applied to determine a suitable value of the regularization parameter when solving ill-conditioned linear systems of equations with a right-hand side contaminated by errors of unknown norm. However, the computation of the L-curve is quite costly for large problems; the determination of a point on the L-curve requires that both the norm of the regularized approxima...
The computation of a few singular triplets of large, sparse matrices is a challenging task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to address this problem through variations of the Lanczos bidiagonalization method, but algorithmic research is ongoing and without production level software. We develop a high quality SVD software...
The s-step Lanczos method is an attractive alternative to the classical Lanczos method as it enables an O(s) reduction in data movement over a fixed number of iterations. This can significantly improve performance on modern computers. In order for s-step methods to be widely adopted, it is important to better understand their error properties. Although the s-step Lanczos method is equivalent to...
Two of the commonly used versions of the Lanczos method for eigenvalues problems are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk, we will address two questions, is the shift-and-invert Lanczos method a viable option on massively parallel machines and which one is more appropriate for a given eigenvalue problem?
The s-step Lanczos method is an attractive alternative to the classical Lanczos method as it enables an O(s) reduction in data movement over a fixed number of iterations. This can significantly improve performance on modern computers. In order for s-step methods to be widely adopted, it is important to better understand their error properties. Although the s-step Lanczos method is equivalent to...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید