نتایج جستجو برای: left looking version of robust incomplete factorization preconditioner
تعداد نتایج: 21221652 فیلتر نتایج به سال:
We describe a Krylov subspace technique, based on incomplete or-thogonalization of the Krylov vectors, which can be considered as a truncated version of GMRES. Unlike GMRES(m), the restarted version of GMRES, the new method does not require restarting. Our numerical experiments show that DQGMRES method often performs better than GMRES(m). In addition, the algorithm is exible to variable precond...
A Newton–Krylov method is developed for the solution of the steady compressible Navier– Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the linear system at each iteration is solved using a restarted GMRES algorithm. Several different preconditioners are examined to achieve fast ...
A Newton-Krylov method is developed for the solution of the steady compressible Navier-Stokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a precond...
In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit type, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize...
We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the proble...
An algebraic multilevel (ML) preconditioner is presented for the Helmholtz equation in heterogeneous media. It is based on a multilevel incomplete LDLT factorization and preserves the inherent (complex) symmetry of the Helmholtz equation. The ML preconditioner incorporates two key components for efficiency and numerical stability: symmetric maximum weight matchings and an inverse-based pivoting...
Consider the linear system of equations of the form Ax = b where the coefficient matrix A ∈ Rn×n is nonsingular, large, sparse and nonsymmetric and also x, b ∈ R. We refer to this system as the original system. An explicit preconditioner M for this system is an approximation of matrix A−1. In [1], Lou presented the Backward Factored INVerse or BFINV algorithm which computes the inverse factoriz...
A Newton-Krylov method is developed for the solution of the steady compressible NavierStokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (BlockILU(0)) is also presented as a precondit...
An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton li...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید