نتایج جستجو برای: ligand based pharmacophore modeling
تعداد نتایج: 3281631 فیلتر نتایج به سال:
Pharmacophore modeling can provide valuable insight into ligand-receptor interactions. It can also be used in 3D (dimensional) database searching for potentially finding biologically active compounds and providing new research ideas and directions for drug-discovery projects. To stimulate the structure-based drug design against SARS (severe acute respiratory syndrome), a pharmacophore search wa...
Three dimensional pharmacophores and pharmacophore searches are well established in virtual screening and have been applied successfully in many prospective and retrospective drug discovery campaigns [1]. While the pharmacophore concept offers an easy and abstract understanding of molecular properties, plenty of user intervention is required to define feasible models. Recently, Silicos NV provi...
Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to ...
Pharmacophore patterns in ligands can be effectively characterized in terms of their constituent pharmacophore multiplets. Bitsets (fingerprints) encoding which particular multiplets are found in a given ligand have been and continue to be used as molecular descriptors in a range of molecular modeling applications, from ligand alignment and diversity analysis to pharmacophore-based flexible sea...
A pharmacophore describes the framework of molecular features that are vital for biological activity a compound. Pharmacophore models built by using structural information about active ligands or targets. The developed used to identify novel compounds satisfy requirements and thus expected be biologically active. Drug discovery process is challenging task requires contribution multidisciplinary...
The aim of this study was to identify small molecule compounds that inhibit the kinase activity of the IGF1 receptor and represent novel chemical scaffolds, which can be potentially exploited to develop drug candidates that are superior to the existing experimental anti-IGF1R therapeuticals. To this end, targeted compound libraries were produced by virtual screening using molecular modeling and...
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Disc...
Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR
Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational predi...
The ligand binding determinants for the angiotensin II type 1 receptor (AT1R), a G protein-coupled receptor (GPCR), have been characterized by means of computer simulations. As a first step, a pharmacophore model of various known AT1R ligands exhibiting a wide range of binding affinities was generated. Second, a structural model of AT1R was built making use of the growing set of crystal structu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید