نتایج جستجو برای: linear diophantine equations
تعداد نتایج: 680438 فیلتر نتایج به سال:
We demonstrate that the answer to the question posed in the title is “yes” and “no”: “no” if the set of permissible operations is restricted to {+,−,×,/,mod,<}; “yes” if we are also allowed a gcd-oracle as a permissible operation. It has been shown (see [Sto76, MST91]) that no strongly polynomial algorithm exists for the problem of finding the greatest common divisor (gcd) of two arbitrary inte...
Diophantine Equations are equations to which only integer solutions or alternatively rational solutions are considered. The study of these equations has fascinated man for thousands of years. The ancient Babylonians enumerated Pythagorean triples, integer solutions to the equation: X2 + y2 = Z 2 The study of Diophantine equations continued through Greece and the Renaissance with Diophantos, Fer...
For any sufficiently strong theory of arithmetic, the set of Diophantine equations provably unsolvable in the theory is algorithmically undecidable, as a consequence of the MRDP theorem. In contrast, we show decidability of Diophantine equations provably unsolvable in Robinson’s arithmetic Q. The argument hinges on an analysis of a particular class of equations, hitherto unexplored in Diophanti...
An S-restricted composition of a positive integer n is an ordered partition of n where each summand is drawn from a given subset S of positive integers. There are various problems regarding such compositions which have received attention in recent years. This paper is an attempt at finding a closed-form formula for the number of S-restricted compositions of n. To do so, we reduce the problem to...
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
This is a survey on Diophantine equations, with the purpose being to give the flavour of some known results on the subject and to describe a few open problems. We will come across Fermat’s last theorem and its proof by Andrew Wiles using the modularity of elliptic curves, and we will exhibit other Diophantine equations which were solved à la Wiles. We will exhibit many families of Thue equation...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید