نتایج جستجو برای: low power adder circuit
تعداد نتایج: 1689202 فیلتر نتایج به سال:
This paper presents high speed and low power full adder cells designed with an alternative internal logic structure and Gate Diffusion Input (GDI) logic styles and hybrid CMOS logic style that lead to have a reduced Power Delay Product (PDP). The main design objective for this adder module is not only providing low-power dissipation and high speed but also full-voltage swing. In the first desig...
A low-voltage and low-power voltage mode adder/subtractor using MOSFETs in weakinversion is presented in this paper. Since the MOSFETs in the proposed circuit are biased in weak inversion, consequently its power dissipation is very low. The proposed circuit has been simulated with the HSPICE using a N-well 0.35μm 2p4m process and the results show that, under the supply voltage of 1V, the power ...
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
Here we describe the design details and performance of proposed Carry Propagate Adder based on GDI technique. GDI technique is power efficient technique for designing digital circuit that consumes less power as compare to most commonly used CMOS technique. GDI also has an advantage of minimum propagation delay, minimum area required and less complexity for designing any digital circuit. We desi...
Modulo 2+1 multiplier is one of the critical components in the area of digital signal processing, residue arithmetic, and data encryption that demand high-speed and low-power operation. In this paper, a new circuit implementation of a high-speed low-power modulo 2+1 multiplier is proposed. It has three major stages: partial product generation stage, partial product reduction stage, and the fina...
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
The increasing demand for low power VLSI can be fulfilled to a great extent by making proper changes in the circuit level and architectural level design. Addition is a fundamental operation, as it is used to implement more complex functions such as subtraction, multiplication, division etc. The Manchester Carry Chain adder design is preferred to other adders, regardless the number of bits becau...
In the recent years reversible logic design has promising applications in low power computing, optical computing, quantum computing. VLSI design mainly concentrates on low power logic circuit design. In the present scenario researchers have made implementations of reversible logic gates in optical domain for its low energy consumption and high speed. This study is all about designing a reversib...
In this paper, we have designed a new variable latency adder and its implementation of decimation filter. There are multiple ways to implement a decimationfilter. This filter design combination of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate conversion and detail of the implementation step to realize this design in h...
Since integration technology is approaching the nanoelectronics range, some practical limits are being reached. Leakage power is increasing more and more with the continuous scaling, and design of clock distribution systems needs to be reconsidered as it becomes difficult to deal with performance and power consumption specifications while keeping a correct synchronisation in modern multi-GHz sy...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید