نتایج جستجو برای: methanol dehydrogenase
تعداد نتایج: 101136 فیلتر نتایج به سال:
Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol poisoning) and death. Therapy consists of general supportive care (e.g. intravenous fluids, corr...
In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation,...
In methylotrophic yeasts, glutathione-dependent formaldehyde dehydrogenase (FLD) is a key enzyme required for the metabolism of methanol as a carbon source and certain alkylated amines such as methylamine as nitrogen sources. We describe the isolation and characterization of the FLD1 gene from the yeast Pichia pastoris. The gene contains a single short intron with typical yeast-splicing signals...
A yeast isolate revealing unique enzymatic activities and substrate-dependent polymorphism was obtained from autochthonous microflora of soil heavily polluted with oily slurries. By means of standard yeast identification procedures the strain was identified as Trichosporon cutaneum. Further molecular PCR product analyses of ribosomal DNA confirmed the identity of the isolate with the genus Tric...
Methyloversatilis universalis FAM5 utilizes single carbon compounds such as methanol or methylamine as a sole source of carbon and energy. Expression profiling reveals distinct sets of genes altered during growth on methylamine vs methanol. As expected, all genes for the N-methylglutamate pathway were induced during growth on methylamine. Among other functions responding to the aminated source ...
The catalytic mechanism of the reductive half reaction of the quinoprotein methanol dehydrogenase (MDH) is believed to proceed either through a hemiketal intermediate or by direct transfer of a hydride ion from the substrate methyl group to the cofactor, pyrroloquinoline quinone (PQQ). A crystal structure of the enzyme-substrate complex of a similar quinoprotein, glucose dehydrogenase, has rece...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید