نتایج جستجو برای: mixed roman domination number
تعداد نتایج: 1380309 فیلتر نتایج به سال:
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
Let G = ( V, E ) be a simple graph with vertex setxs V and edge set . A mixed Roman dominating function of is f : ∪ → {0, 1, 2} satisfying the condition that every element x ∈ for which f(x) 0 adjacent or incident to at least one y f(y) 2. The weight ω( ∑ domination number γ R minimum We first show problem computing * NP-complete bipartite graphs then we present upper lower bounds on number, so...
Domination theory is a well-established topic in graph theory, as well one of the most active research areas. Interest this area partly explained by its diversity applications to real-world problems, such facility location computer and social networks, monitoring communication, coding algorithm design, among others. In last two decades, functions defined on graphs have attracted attention sever...
We analyze the graph-theoretic formalization of Roman domination, dating back to the military strategy of Emperor Constantine, from a parameterized perspective. More specifically, we prove that this problem is W[2]-complete for general graphs. However, parameterized algorithms are presented for graphs of bounded treewidth and for planar graphs. Moreover, it is shown that a parametric dual of Ro...
In this work, we study the signed Roman domination number of the join of graphs. Specially, we determine it for the join of cycles, wheels, fans, and friendship graphs.
Roman domination in graphs is concerned with the problem of finding a vertex labelling, with minimum weight, satisfaying certain conditions. In this work, the authors initiate the study of a generalization to labellings of both vertices and edges in a graph.
The Roman domination problem is considered. An improvement of two existing Integer Linear Programing (ILP) formulations is proposed and a comparison between the old and new ones is given. Correctness proofs show that improved linear programing formulations are equivalent to the existing ones regardless of the variables relaxation and usage of lesser number of constraints.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید