نتایج جستجو برای: mouse somatic cell nuclear transfer
تعداد نتایج: 2294906 فیلتر نتایج به سال:
N uclear transfer is an effective reprogramming strategy that can redirect the utilization of nuclear instructions and ultimately phenotypes (1). When oocytes are used as the host, a somatic cell nucleus can be reprogrammed to activate the earliest stages of embryonic development (2, 3). Nuclear transfer embryos can develop until the stage when they are ready to implant into the uterus or short...
Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse ...
Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspect...
Background: Since the sheep ‘Dolly’ was successfully cloned by somatic cell nuclear transfer (SCNT), the inefficiency of SCNT cloning and abnormality of cloned animals have been a focus of considerable controversy. Oocyte quality has been shown to contribute to poor somatic cloning and cell reprogramming efficiency with many factors affecting oocyte quality and developmental potential. It has b...
Human therapeutic cloning requires the reprogramming of a somatic cell by nuclear transfer to generate autologous totipotent stem cells. We have parthenogenetically activated 22 human eggs and also performed nuclear transfer in 17 metaphase II eggs. Cleavage beyond the eight-cell stage was obtained in the parthenogenetic-activated eggs, and blastocoele cavities were observed in six. Three somat...
The POU (Pit-Oct-Unc)-domain transcription factor, Oct-4, has become a useful marker of pluripotency in the mouse. It is found exclusively in mouse preimplantation-stage embryos after embryonic genome activation and is a characteristic of mouse embryonic stem (ES) cells, and its absence in knockout mice precludes inner cell mass (ICM) formation in blastocysts. Expression of Oct-4 has also been ...
Apoptotic and Epigenetic Induction of Embryo Failure Following Somatic Cell Nuclear Transfer
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید