نتایج جستجو برای: multiplicative second zagreb index
تعداد نتایج: 1001246 فیلتر نتایج به سال:
For a graph, the first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Denote by Gn,k the set of graphs with n vertices and k cut edges. In this paper, we showed the types of graphs with the largest and the second largest M1 and M2 among Gn,k .
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...
we give sharp upper bounds on the zagreb indices and lower bounds on the zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید