نتایج جستجو برای: n phi prime submodule
تعداد نتایج: 1021384 فیلتر نتایج به سال:
Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
0
Mat r x ( F q ) o f a l l r b y r m a t r i c e s o v e r F q , b y C t h e g r o u p G L t i ( F q ) o f t h e u n i t s of M, and by S the special linear subgroup SL , (F q ) o f C . F o r a n a r b i t r a r y field F containing F q , l e t U s t a n d f o r t h e ( c o m m u t a t i v e ) p o l y n o m i a l a l g e b r a F[xl, , x r ] , a n d c o n s i d e r U g r a d e d a s u s u a l : U...
Let φ denote Euler’s phi function. For a fixed odd prime q we investigate the first and second order terms of the asymptotic series expansion for the number of n 6 x such that q ∤ φ(n). Part of the analysis involves a careful study of the Euler-Kronecker constants for cyclotomic fields. In particular, we show that the Hardy-Littlewood conjecture about counts of prime k-tuples and a conjecture o...
in this paper, we study some kinds of majorizations on $textbf{m}_{n}$ and their linear or strong linear preservers. also, we find the structure of linear or strong linear preservers which are multiplicative, i.e. linear or strong linear preservers like $phi $ with the property $phi (ab)=phi (a)phi (b)$ for every $a,bin textbf{m}_{n}$.
Let R be a commutative ring with unity. And let E unitary R-module. This paper introduces the notion of 2-prime submodules as generalized concept ideal, where proper submodule H module F over is said to if , for r and x implies that or . we prove many properties this kind submodules, then only [N ] E, R. Also, non-zero multiplication module, [K: F] [H: every k such K. Furthermore, will study ba...
Let R be a Noetherian ring, F := Rr and M ⊆ F a submodule of rank r. Let A∗(M) denote the stable value of Ass(Fn/Mn), for n large, where Fn is the nth symmetric power of Fn and Mn is the image of the nth symmetric power of M in Fn. We provide a number of characterizations for a prime ideal to belong to A∗(M). We also show that A∗(M) ⊆ A∗(M), where A∗(M) denotes the stable value of Ass(Fn/Mn).
In this paper, we study some kinds of majorizations on $textbf{M}_{n}$ and their linear or strong linear preservers. Also, we find the structure of linear or strong linear preservers which are multiplicative, i.e. linear or strong linear preservers like $Phi $ with the property $Phi (AB)=Phi (A)Phi (B)$ for every $A,Bin textbf{M}_{n}$.
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید