نتایج جستجو برای: non linear ergodic theorem
تعداد نتایج: 1820369 فیلتر نتایج به سال:
This paper is the second part of our study started with Cattiaux et al. (2014). For some ergodic hamiltonian systems we obtained a central limit theorem for a non-parametric estimator of the invariant density, under partial observation (only the positions are observed). Here we obtain similarly a central limit theorem for a non-parametric estimator of the drift term. This theorem relies on the ...
1. General introduction, Birkhoff’s Ergodic Theorem vs. Ratner’s Theorems on unipotent flows; measure classification implies classification of orbit closures; uniform convergence and the theorem of Dani-Margulis; the statement of the Oppenheim Conjecture. 2. The case of SL(2, R) (the mixing argument). We will be loosely following Ratner’s paper [18]. 3. The classification of invariant measures ...
A theorem of Kučera states that given a Martin-Löf random infinite binary sequence ω and an effectively open set A of measure less than 1, some tail of ω is not in A. We show that this result can be seen as an effective version of Birkhoff’s ergodic theorem (in a special case). We prove several results in the same spirit and generalize them via an effective ergodic theorem for bijective ergodic...
This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundam...
We prove that the two dimensional Navier-Stokes equations possesses an exponentially attracting invariant measure. This result is in fact the consequence of a more general “Harris-like” ergodic theorem applicable to many dissipative stochastic PDEs and stochastic processes with memory. A simple iterated map example is also presented to help build intuition and showcase the central ideas in a le...
Abstract. We investigate uniform ergodic type theorems for additive and subadditive functions on a subshift over a finite alphabet. We show that every strictly ergodic subshift admits a uniform ergodic theorem for Banach-spacevalued additive functions. We then give a necessary and sufficient condition on a minimal subshift to allow for a uniform subadditive ergodic theorem. This provides in par...
The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However, the proof of that theorem relies upon a delicate a...
Local Ergodic Theorem (also known as ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption...
This essay investigates Furstenberg’s proof of Szemerédi’s Theorem. The necessary concepts and results from ergodic theory are introduced, including the Poincaré and Mean Ergodic Theorems which are proved in full. The Ergodic Decomposition Theorem is also discussed. Furstenberg’s Multiple Recurrence Theorem is then stated and shown to imply Szemerédi’s Theorem. The remainder of the essay concen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید