نتایج جستجو برای: npc1
تعداد نتایج: 544 فیلتر نتایج به سال:
Niemann-Pick type C disease is a rare and ultimately fatal lysosomal storage disorder with variable neurologic symptoms. The disease-causing mutations concern NPC1 or NPC2, whose dysfunction entails accumulation of cholesterol in the endosomal-lysosomal system and the selective death of specific neurons, namely cerebellar Purkinje cells. Here, we investigated whether neurodegeneration is preced...
The Niemann-Pick disease, type C1 (NPC1) gene encodes a transmembrane protein involved in cholesterol efflux from the lysosome. SNPs within NPC1 have been associated with obesity and type 2 diabetes, and mice heterozygous or null for NPC1 are insulin resistant. However, the molecular mechanism underpinning this association is currently undefined. This study aimed to investigate the effects of i...
Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder that results in progressive neurological impairment. The NPC1 phenotype is extremely variable and at the individual level is likely influenced by other genetic traits. In addition to residual function of NPC1 protein, we hypothesize that modifier genes, as frequently observed with other autosomal recessive diseases, influence the ...
Niemann-Pick C disease (NPC) is an irreversible neurodegenerative disorder without current treatment. It is thought to result from deficient intracellular cholesterol and/or ganglioside trafficking. We have investigated the effects of allopregnanolone treatments on survival, weight loss, motor function, magnetic resonance imaging (MRI), and neuropathology in the mouse model of NPC (Npc1(-/-) mi...
BACKGROUND The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). METHODS Fifty CVD patients and 50 healthy sub...
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function to regulate cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses which integrity transport required, this also allows entry Ebola virus (EBOV) into host cells acting receptor. EBOV glycoprotein (EBOV-GP) interaction with...
Activation of protein kinase C (PKC) has previously been shown to ameliorate the cholesterol transport defect in Niemann Pick Type C1 (NPC1) cells, presumably by increasing the soluble levels of one of its substrates, vimentin. This activity would then restore the vimentin cycle in these cells and allow vimentin-dependent retrograde transport to proceed. Here, we further investigate the effects...
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations i...
Lysosomes are lined with a glycocalyx that protects the limiting membrane from the action of degradative enzymes. We tested the hypothesis that Niemann-Pick type C 1 (NPC1) protein aids the transfer of low density lipoprotein-derived cholesterol across this glycocalyx. A prediction of this model is that cells will be less dependent upon NPC1 if their glycocalyx is decreased in density. Lysosome...
Niemann-Pick type C (NPC)1 is a rare neurodegenerative disease for which treatment options are limited. A major barrier to development of effective treatments has been the lack of validated biomarkers to monitor disease progression or serve as outcome measures in clinical trials. Using targeted metabolomics to exploit the complex lipid storage phenotype that is the hallmark of NPC1 disease, we ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید