نتایج جستجو برای: oct4
تعداد نتایج: 2762 فیلتر نتایج به سال:
Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, ...
BAF chromatin remodeling complexes containing the BRG1 protein have been shown to be not only essential for early embryonic development, but also paramount in enhancing the efficiency of reprogramming somatic cells to pluripotency mediated by four transcription factors. To investigate the role of BRG1 in regulating pluripotency, we found that Oct4 and Nanog levels were increased immediately aft...
Oct4 is a mammalian POU transcription factor expressed by early embryo cells and germ cells. We report that the activity of Oct4 is essential for the identity of the pluripotential founder cell population in the mammalian embryo. Oct4-deficient embryos develop to the blastocyst stage, but the inner cell mass cells are not pluripotent. Instead, they are restricted to differentiation along the ex...
The human OCT4 gene can generate at least three transcripts (OCT4A, OCT4B, and OCT4B1) and four protein isoforms (OCT4A, OCT4B-190, OCT4B-265, and OCT4B-164) by alternative splicing and alternative translation initiation. OCT4A is a transcription factor responsible for the pluripotency properties of embryonic stem (ES) cells. While OCT4B cannot sustain ES cell self-renewal, it may respond to ce...
Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct...
Nanog, Sox2, and Oct4 are transcription factors all essential to maintaining the pluripotent embryonic stem cell phenotype. Through a cooperative interaction, Sox2 and Oct4 have previously been described to drive pluripotent-specific expression of a number of genes. We now extend the list of Sox2-Oct4 target genes to include Nanog. Within the Nanog proximal promoter, we identify a composite sox...
The POU-V transcription factor Oct4 is a master regulator of self-renewal and pluripotency in embryonic stem (ES) cells as well as an important regulator of lineage commitment in embryonic development. We have shown that Oct4’s ability to regulate selfrenewal in ES cells is related to a conserved function in regulating embryonic differentiation in certain vertebrates. During Xenopus laevis deve...
The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox2(0bp)) or 3 base pairs (Oct4/Sox2(3bp)) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complex...
Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages wh...
Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید