Let p(x) be a hyperbolic polynomial–like function of the form p(x) = (x − r1)1 · · · (x − rN )N , where m1, . . . ,mN are given positive real numbers and r1 < r2 < · · · < rN . Let x1 < x2 < · · · < xN−1 be the N − 1 critical points of p lying in Ik = (rk, rk+1), k = 1, 2, . . . , N−1. Define the ratios σk = xk−rk rk+1−rk , k = 1, 2, . . . , N−1. We prove that mk mk+···+mN < σk < m1+···+mk m1+·...