نتایج جستجو برای: possibilistic statistics
تعداد نتایج: 179658 فیلتر نتایج به سال:
Possibilistic answer set programming (PASP) unites answer set programming (ASP) and possibilistic logic (PL) by associating certainty values with rules. The resulting framework allows to combine both non-monotonic reasoning and reasoning under uncertainty in a single framework. While PASP has been well-studied for possibilistic definite and possibilistic normal programs, we argue that the curre...
Possibility theory is applied to introduce and reason about the fundamental notion of a key for uncertain data. Uncertainty is modeled qualitatively by assigning to tuples of data a degree of possibility with which they occur in a relation, and assigning to keys a degree of certainty which says to which tuples the key applies. The associated implication problem is characterized axiomatically an...
Compared with the conventional probabilistic mean-variance methodology, fuzzy number can better describe an uncertain environment with vagueness and ambiguity. Based on this fact, possibilistic mean-variance utilities to portfolio selection for bounded assets are discussed in this paper. The possibilistic mean value of the expected return is termed measure of investment return and the possibili...
Possibilistic logic bases and possibilistic graphs are two different frameworks of interest for representing knowledge. The former stratifies the pieces of knowledge (expressed by logical formulas) accor?i�g to their level of certainty, while the latter exhibits relationships between variables. The two types of representations are semantically equivalent when they lead to the same possibility d...
Conditioning is an important task for designing intelligent systems in artificial intelligence. This paper addresses an issue related to the possibilistic counterparts of Jeffrey’s rule of conditioning. More precisely, it addresses the existence and unicity of solutions computed using the possibilistic counterparts of the socalled kinematics properties underlying Jeffrey’s rule of conditioning....
Possibilistic causal models have been proposed as an approach for prediction and diagnosis based on uncertain causal relations. However, the only way to develop the causal models is to acquire the possibilistic knowledge from the experts. The paper proposes an approach to develop the models from a dataset including causes and effects. It first develops a probabilistic causal model, then transfo...
We extend hybrid possibilistic conditioning to deal with inputs consisting of a set of triplets composed of propositional formulas, the level at which the formulas should be accepted, and the way in which their models should be revised. We characterize such conditioning using elementary operations on possibility distributions. We then solve a difficult issue that concerns the syntactic computat...
Possibilistic logic and quasi-classical logic are two logics that were developed in artificial intelligence for coping with inconsistency in different ways, yet preserving the main features of classical logic. This paper presents a new logic, called quasi-possibilistic logic, that encompasses possibilistic logic and quasi-classical logic, and preserves the merits of both logics. Indeed, it can ...
Possibilistic logic, an extension of first-order logic, deals with uncertainty that can be es timated in terms of possibility and necessity measures. Syntactically, this means that a first-order formula is equipped with a possi bility degree or a necessity degree that ex presses to what extent the formula is pos sibly or necessarily true. Possibilistic reso lution yields a calculus for pos...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید