نتایج جستجو برای: regenerative ability
تعداد نتایج: 436808 فیلتر نتایج به سال:
H.S. Bernstein (ed.), Tissue Engineering in Regenerative Medicine, Stem Cell Biology and Regenerative Medicine, DOI 10.1007/978-1-61779-322-6_2, © Springer Science+Business Media, LLC 2011 Abstract Human embryonic stem cells have the capacity for self-renewal and pluripotency, making them a primary candidate for tissue engineering and regenerative therapies. To date, numerous human embryonic st...
Objectives: Success of regenerative dental procedures highly depends on their acceptance by the clinicians; yet, little is known about dental residents’ attitudes regarding this new technology. The purpose of this study was to assess the knowledge and attitude of post-graduate dental students towards stem cells and regenerative dentistry as part of future dental treatments. Methods: This cross...
Mammalian myocardial infarction is typically followed by scar formation with eventual ventricular dilation and heart failure. Here we present a novel model system in which mice constitutively expressing cyclin A2 in the myocardium elicit a regenerative response after infarction and exhibit significantly limited ventricular dilation with sustained and remarkably enhanced cardiac function. New ca...
Axotomized central neurons of most invertebrate species demonstrate a strong regenerative capacity, and as such may provide valuable molecular insights and new tools to promote axonal regeneration in injured mammalian neurons. In this study, we identified a novel molluscan protein, caltubin, ubiquitously expressed in central neurons of Lymnaea stagnalis and locally synthesized in regenerating n...
The ability to reverse lineage-committed cells toward pluripotent stem cells or to another cell type is one of the ultimate goals in regenerative medicine. We recently discovered that activation of innate immunity, through Toll-like receptor 3, is required during this conversion of cell fate by causing global changes in the expression and activity of epigenetic modifiers. Here we discuss, in a ...
Skeletal muscle in both amphibians and mammals possesses a high regenerative capacity. In amphibians, a muscle can regenerate in two distinct ways: as a tissue component of an entire regenerating limb (epimorphic regeneration) or as an isolated entity (tissue regeneration). In the absence of epimorphic regenerative ability, mammals can regenerate muscles only by the tissue mode. This review foc...
The ability to create new functional cardiomyocytes is the holy grail of cardiac regenerative medicine. From studies using model organisms, new insights into the fundamental pathways that drive heart muscle regeneration have begun to arise as well as a growing knowledge of the distinct families of multipotent cardiovascular progenitors that generate diverse lineages during heart development. In...
In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید