Let S be a set of transpositions generating the symmetric group Sn, where n ≥ 3. It is shown that if the girth of the transposition graph of S is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the direct product Sn×Aut(T (S)), where T (S) is the transposition graph of S; the direct factors are the right regular representation of Sn and the image of the left regular ac...