نتایج جستجو برای: sigma quasi baer rings
تعداد نتایج: 156105 فیلتر نتایج به سال:
In this paper, we introduce a new concept of generalized matrix rings and build up the general theory of radicals for g.m.rings. Meantime, we obtain r̄b(A) = g.m.rb(A) = ∑ {rb(Aij) | i, j ∈ I} = rb(A)
Let $R$ be a commutative ring and $M$ an $R$-module. A submodule $N$ of is called d-submodule $($resp., fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ finite subset $F\subseteq N)$ $m'\in M$ implies that N.$ Many examples, characterizations, properties these submodules are given. Moreover, we use them to characterize modules satisfying Prop...
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
For the subclasses $mathcal{M}_1$ and $mathcal{M}_2$ of monomorphisms in a concrete category $mathcal{C}$, if $mathcal{M}_2subseteq mathcal{M}_1$, then $mathcal{M}_1$-injectivity implies $mathcal{M}_2$-injectivity. The Baer type criterion is about the converse of this fact. In this paper, we apply injectivity to the classes of $C$-dense, $C$-closed monomorphisms. The con...
let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید