نتایج جستجو برای: strang method
تعداد نتایج: 1630284 فیلتر نتایج به سال:
In this paper, we define a splitting scheme for the [Formula: see text]-level Bloch model which makes use of exact numerical solutions sub-equations. These involve matrix exponentials want to avoid calculate at each time-step. The resulting is nonstandard and preserves qualitative properties equations. We explore compare numerically multiple ways implement it in particular take into account spe...
The lattice Boltzmann space/time discretisation, as usually derived from integration along characteristics, is shown to correspond to a Strang splitting between decoupled streaming and collision steps. Strang splitting offers a second-order accurate approximation to evolution under the combination of two non-commuting operators, here identified with the streaming and collision terms in the disc...
In this paper a novel predictor–corrector algorithm is presented for the solution of coupled gas-phase – particulate systems. The emphasis of this work is the study of soot formation, but the concepts can be applied to other systems. This algorithm couples a stiff ODE solver to a Monte Carlo population balance solver. Such coupling has been achieved previously for similar systems using a Strang...
Computing solutions of convection-diffusion equations, especially in the convection dominated case, is an important and challenging problem that requires development of fast, reliable numerical methods. We propose a second-order fast explicit operator splitting (FEOS) method based on the Strang splitting. The main idea of the method is to solve the parabolic problem via a discretization of the ...
In this work we construct and analyze discrete artificial boundary conditions (ABCs) for different finite difference schemes to solve nonlinear Schrödinger equations. These new discrete boundary conditions are motivated by the continuous ABCs recently obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are based on the discrete ABCs for the linear problem we first revi...
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier–Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Given a dilation matrix A : Z d → Z d , and G a complete set of coset representatives of 2π(A −− Z d /Z d), we consider polynomial solutions M to the equation g∈G M (ξ + g) = 1 with the constraints that M ≥ 0 and M (0) = 1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbol...
We first prove the second order convergence of the Strang-type splitting scheme for the nonlinear Schrödinger equation. The proof does not require commutator estimates but crucially relies on an integral representation of the scheme. It reveals the connection between Strang-type splitting and the midpoint rule. We then show that the integral representation idea can also be used to study the sto...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید