نتایج جستجو برای: temperature gradient

تعداد نتایج: 566595  

Journal: :Journal of Statistical Mechanics: Theory and Experiment 2012

Journal: :Canadian Journal of Plant Science 1974

2010
Jan Krejci Zuzana Sajdlova Jan Krejci Tomas Marvanek

Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a sec...

Journal: :Electrophoresis 2007
David E Huber Juan G Santiago

Microfluidic temperature gradient focusing (TGF) uses an axial temperature gradient to induce a gradient in electrophoretic flux within a microchannel. When balanced with an opposing fluid flow, charged analytes simultaneously focus and separate according to their electrophoretic mobilities. We present a theoretical and experimental study of dispersion in TGF. We model the system using generali...

Journal: :Physical review letters 2011
Steven J Schwartz Edmund Henley Jeremy Mitchell Vladimir Krasnoselskikh

Shock waves are ubiquitous in space and astrophysics. They transform directed flow energy into thermal energy and accelerate energetic particles. The energy repartition is a multiscale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. While large scale features of ion heating are known, the electron heating and smaller scale fields remai...

2010
M. Akbari

An optothermal analyte preconcentration method is introduced in this work based on temperature gradient focusing. The present approach offers a flexible, noncontact technique for focusing and transporting of analytes. Here, we use a commercial video projector and an optical system to generate heat and control the heat source position, size and power. This heater is used to focus a sample model ...

2008
JUAN G. SANTIAGO

Molecular dispersion is caused by both molecular diffusion and non-uniform bulk fluid motion. While the Taylor–Aris dispersion regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient and quickly gives way to Taylor–Aris dispersion. In electrophore...

Journal: :Acta Crystallographica Section A Foundations of Crystallography 2011

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید