نتایج جستجو برای: total k rainbow dominating function
تعداد نتایج: 2251703 فیلتر نتایج به سال:
a r t i c l e i n f o a b s t r a c t For a fixed positive integer k, a k-tuple total dominating set of a graph G = (V , E) is a subset T D k of V such that every vertex in V is adjacent to at least k vertices of T D k. In minimum k-tuple total dominating set problem (Min k-Tuple Total Dom Set), it is required to find a k-tuple total dominating set of minimum cardinality and Decide Min k-Tuple ...
for every positive integer k, a set s of vertices in a graph g = (v;e) is a k- tuple dominating set of g if every vertex of v -s is adjacent to at least k vertices and every vertex of s is adjacent to at least k - 1 vertices in s. the minimum cardinality of a k-tuple dominating set of g is the k-tuple domination number of g. when k = 1, a k-tuple domination number is the well-studied domination...
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the notion of k-dominating ...
A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the notion of k-dominating ...
Let k be a positive integer. A subset S of V (G) in a graph G is a k-tuple total dominating set of G if every vertex of G has at least k neighbors in S. The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the k-tuple tota...
For a fixed positive integer k, a k-tuple total dominating set of a graph G is a subset D ⊆ V (G) such that every vertex of G is adjacent to at least k vertices in D. The k-tuple total domination problem is to determine a minimum k-tuple total dominating set of G. This paper studies k-tuple total domination from an algorithmic point of view. In particular, we present a linear-time algorithm for...
{sl let $[n]={1,dots, n}$ be colored in $k$ colors. a rainbow ap$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. conlon, jungi'{c} and radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow ap(4) free, when $n$ is even. based on their construction, we show that such a coloring of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید