Gromov-Hausdorff convergence is an important tool in comparison Riemannian geometry. Given a sequence of Riemannian manifolds of dimension n with Ricci curvature bounded from below, Gromov’s precompactness theorem says that a subsequence will converge in the pointed Gromov-Hausdorff topology to a length space [G-99, Section 5A]. If the sequence has bounded sectional curvature, then the limit wi...