نتایج جستجو برای: unbounded distributive lattice
تعداد نتایج: 109886 فیلتر نتایج به سال:
We prove that every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K in which all congruences are principal. We verify this result in a stronger form as an extension theorem.
In his paper (1942), Ore found necessary and sufficient conditions under which the modular and distributive laws hold in the lattice of equivalence relations on a set S. In the present paper, we consider commuting equivalence relations. It has been proved by J6nsson (1953) that the modular law holds in the lattice of commuting equivalence relations. We give some necessary and sufficient conditi...
We describe a part of the lattice of subvarieties of left distributive left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈ (xy)(xz) and (xx)y ≈ xy) modulo the lattice of subvarieties of left distributive idempotent groupoids. A free groupoid in a subvariety of LDLI groupoids satisfying an identity x ≈ x decomposes as the direct product of its largest idempotent factor and a ...
A semiring variety is d-semisimple if it is generated by the distributive lattice of order two and a finite number of finite fields. A d-semisimple variety V = HSP{B2, F1, . . . , Fk} plays the main role in this paper. It will be proved that it is finitely based, and that, up to isomorphism, the two-element distributive lattice B2 and all subfields of F1, . . . , Fk are the only subdirectly irr...
Weakly submodular rank functions, supermatroids, and the flat lattice of a distributive supermatroid
Distributive supermatroids generalize matroids to partially ordered sets. Completing earlier work of Barnabei, Nicoletti and Pezzoli we characterize the lattice of flats of a distributive supermatroid. For the prominent special case of a polymatroid the description of the flat lattice is particularly simple. Large portions of the proofs reduce to properties of weakly submodular rank functions. ...
We give a new characterization of sober spaces in terms of their completely distributive lattice of saturated sets. This characterization is used to extend Abramsky’s results about a domain logic for transition systems. The Lindenbaum algebra generated by the Abramsky finitary logic is a distributive lattice dual to an SFP-domain obtained as a solution of a recursive domain equation. We prove t...
For a distributive lattice L, we consider the problem of interpolating functions f : D → L defined on a finite set D ⊆ L, by means of lattice polynomial functions of L. Two instances of this problem have already been solved. In the case when L is a distributive lattice with least and greatest elements 0 and 1, Goodstein proved that a function f : {0, 1} → L can be interpolated by a lattice poly...
We show that a nite distributive lattice can be embedded into the r.e. degrees preserving least and greatest element i the lattice contains a join-irreducible noncappable element.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید