In [17], a certain family of Siegel Eisenstein series of genus g and weight (g + 1)/2 was introduced. They have an odd functional equation and hence have a natural zero at their center of symmetry (s = 0). It was suggested that the derivatives at s = 0 of such series, which we will refer to as incoherent Eisenstein series, should have some connection with arithmetical algebraic geometry. Some e...