نتایج جستجو برای: کشف ناهنجاری کد کننده خودکار lstm

تعداد نتایج: 105822  

2016
Tri Dao

We investigate the effect of ensembling on two simple models: LSTM and bidirectional LSTM. These models are used for fine-grained sentiment classification on the Stanford Sentiment Treebank dataset. We observe that ensembling improves the classification accuracy by about 3% over single models. Moreover, the more complex model, bidirectional LSTM, benefits more from ensembling.

2016
Shyam Sundar Rajagopalan Louis-Philippe Morency Tadas Baltrusaitis Roland Göcke

Long Short-Term Memory (LSTM) networks have been successfully applied to a number of sequence learning problems but they lack the design flexibility to model multiple view interactions, limiting their ability to exploit multi-view relationships. In this paper, we propose a Multi-View LSTM (MV-LSTM), which explicitly models the view-specific and cross-view interactions over time or structured ou...

Journal: :CoRR 2016
Dingkun Long Richong Zhang Yongyi Mao

The difficulty in analyzing LSTM-like recurrent neural networks lies in the complex structure of the recurrent unit, which induces highly complex nonlinear dynamics. In this paper, we design a new simple recurrent unit, which we call Prototypical Recurrent Unit (PRU). We verify experimentally that PRU performs comparably to LSTM and GRU. This potentially enables PRU to be a prototypical example...

Journal: :CoRR 2017
Oleksii Kuchaiev Boris Ginsburg

We present two simple ways of reducing the number of parameters and accelerating the training of large Long Short-Term Memory (LSTM) networks: the first one is ”matrix factorization by design” of LSTM matrix into the product of two smaller matrices, and the second one is partitioning of LSTM matrix, its inputs and states into the independent groups. Both approaches allow us to train large LSTM ...

2016
Heiga Zen Yannis Agiomyrgiannakis Niels Egberts Fergus Henderson Przemyslaw Szczepaniak

Acoustic models based on long short-term memory recurrent neural networks (LSTM-RNNs) were applied to statistical parametric speech synthesis (SPSS) and showed significant improvements in naturalness and latency over those based on hidden Markov models (HMMs). This paper describes further optimizations of LSTM-RNN-based SPSS for deployment on mobile devices; weight quantization, multi-frame inf...

Journal: :CoRR 2017
Xiaochen Chen Lai Wei Jiaxin Xu

In this paper, we use the house price data ranging from January 2004 to October 2016 to predict the average house price of November and December in 2016 for each district in Beijing, Shanghai, Guangzhou and Shenzhen. We apply Autoregressive Integrated Moving Average model to generate the baseline while LSTM networks to build prediction model. These algorithms are compared in terms of Mean Squar...

2017
Haowei Zhang Jin Wang Jixian Zhang Xuejie Zhang

In this paper, we propose a multi-channel convolutional neural network-long shortterm memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Unlike a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features i...

ژورنال: :اقتصاد و الگو سازی ( اقتصاد سابق) 0
ویدا ورهرامی استادیار دانشگاه شهید بهشتی، دانشکده علوم اقتصادی و سیاسی، (نویسنده مسئول) کیوان شهاب لواسانی دانشجوی دکتری اقتصاد، دانشگاه تهران

به طور معمول، در یک نظام مالی، تثبیت کننده های خودکار مالی به جهت کمک به تثبیت نوسانات بخش ادواری تولید یا سیکلهای تجاری وجود دارند. این مقاله یک تحلیل تجربی درمورد نقش تثبیت کننده خودکار مالیات بر درآمد را با استفاده از یک مدل خود رگرسیون برداری ساختاری ارائه می دهد. این مطالعه همچنین به بررسی ارتباط بین مالیات بر درآمد به عنوان یک تثبیت کننده خودکار طی یک مدل تجربی که در برگیرنده نقش و اثرات ...

2017
Huiting Zheng Jiabin Yuan

Accurate load forecasting is an important issue for the reliable and efficient operation of a power system. This study presents a hybrid algorithm that combines similar days (SD) selection, empirical mode decomposition (EMD), and long short-term memory (LSTM) neural networks to construct a prediction model (i.e., SD-EMD-LSTM) for short-term load forecasting. The extreme gradient boosting-based ...

Journal: :CoRR 2017
Dan Liu Ching Yee Suen Olga Ormandjieva

Recurrent Neural Networks with Long Short-Term Memory cell (LSTM-RNN) have impressive ability in sequence data processing, particularly for language model building and text classification. This research proposes the combination of sentiment analysis, new approach of sentence vectors and LSTM-RNN as a novel way for Sexual Predator Identification (SPI). LSTM-RNN language model is applied to gener...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید