نتایج جستجو برای: amalgamated algebra along an ideal
تعداد نتایج: 5900244 فیلتر نتایج به سال:
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
We prove the following result: Theorem. Every algebraic distributive lattice D with at most א1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring R. (By earlier results of the author, the א1 bound is optimal.) Therefore, D is also isomorphic to the congruence lattice of a sectionally complemented modular lattice L, namely, the principal right ideal lattice of R. F...
in this paper rst we dene the notions of positive implicativehyper mv -ideals of types 1,2,3 and 4 in hyper mv -algebras and we investigatethe relationship between of them . then by some examples we show that thesenotions are not equivalent. finally we give some relations between these notionsand the notions of (weak) hyper mv -ideals and (weak) hyper mv -deductivesystems of hyper mv -algebras.
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
By weakening the counit and antipode axioms of a C∗-Hopf algebra and allowing for the coassociative coproduct to be non-unital we obtain a quantum group, that we call a weak C∗Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. This amounts to generalizing the Baaj-Skandalis multiplicative unitaries to multipicative partial isometries. E...
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید