نتایج جستجو برای: back propagation neural networks bpnn
تعداد نتایج: 869342 فیلتر نتایج به سال:
The prediction of wind speed is imperative nowadays due to the increased and effective generation power. Wind power clean, free conservative renewable energy. It necessary predict speed, implement generation. This paper proposes a new model, named WT-GWO-BPNN, by integrating Wavelet Transform (WT), Back Propagation Neural Network (BPNN) Grey Wolf Optimization (GWO). wavelet transform adopted de...
Support vector machine (SVM), as a novel type of learning machine, for the first time, was used to develop a predictive model for early diagnosis of anorexia. It was based on the concentration of six elements (Zn, Fe, Mg, Cu, Ca, and Mn) and the age extracted from 90 cases. Compared with the results obtained from two other classifiers, partial least squares (PLS) and back-propagation neural net...
Prediction of wave height is of great importance in marine and coastal engineering. In this study, the performances of artificial neural networks (feed forward with back propagation algorithm) for online significant wave heights prediction, in Persian Gulf, were investigated. The data set used in this study comprises wave and wind data gathered from shallow water location in Persian Gulf. Curre...
Introduction: Acute appendicitis is one of the most common causes of emergency surgery especially in children. Proper and on-time diagnosis may decrease the unwanted complications. In despite of diagnostic methods, a significant number of patients yet and up with negative laparotomies. The aim of this study was to assess the role of artificial neural networks in diagnosis of acute appendicitis ...
Nowadays steel balls wear is a major problem in mineral processing industries and forms a significant part of the grinding cost. Different factors are effective on balls wear. It is needed to find models which are capable to estimate wear rate from these factors. In this paper a back propagation neural network (BPNN) and multiple linear regression (MLR) method have been used to predict wear rat...
Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the ele...
An efficient methodology is proposed to find optimal shape of arch dams on the basis of constrained natural frequencies. The optimization is carried out by virtual sub population (VSP) evolutionary algorithm employing real values of design variables. In order to reduce the computational cost of the optimization process, the arch dam natural frequencies are predicted by properly trained back pro...
Mechanical alloying technique is used for production of nanostructured soft magnetic alloys. In this work the back propagation (BP) artificial neural adopted to model the effect of various mechanical alloying parameters i.e. milling time and chemical composition, on the properties of Fe-Ni powders. Lattice parameter, grain size, lattice strain, coersivity and saturation intrinsic flux den...
Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the ele...
This paper proposes a complete-information-based principal component analysis (CIPCA)-back-propagation neural network (BPNN)_ fault prediction method using real unmanned aerial vehicle (UAV) flight data. Unmanned vehicles are widely used in commercial and industrial fields. With the development of UAV technology, it is imperative to diagnose predict faults improve their safety reliability. The ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید