نتایج جستجو برای: backpropagation network
تعداد نتایج: 673493 فیلتر نتایج به سال:
The recognition of ten Thai isolated numerals from zero to nine and 60 Thai polysyllabic words are compared between different recognition techniques, namely, Neural Network, Modified Rackpropagation Neural Network. Fuzzy-Neural Network, and Hidden Markov Model. The I j-state left-to-right discrete hidden markov model in cooperation with the vector quantization technique has been studied and com...
We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or adaptive quantum networks. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate lin...
We apply a neural network to model neural network learning algorithm itself. The process of weights updating in neural network is observed and stored into file. Later, this data is used to train another network, which then will be able to train neural networks by imitating the trained algorithm. We use backpropagation algorithm for both, for training, and for sampling the training process. We i...
Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks ...
The problem of learning Bayesian networks with hidden variables is known to be a hard problem. Even the simpler task of learning just the conditional probabilities on a Bayesian network with hidden variables is hard. In this paper, we present an approach that learns the conditional probabilities on a Bayesian network with hidden variables by transforming it into a multi-layer feedforward neural...
Deep neural networks with millions of parameters are at the heart of many state of the art machine learning models today. However, recent works have shown that models with much smaller number of parameters can also perform just as well. In this work, we introduce the problem of architecture-learning, i.e; learning the architecture of a neural network along with weights. We start with a large ne...
Some results from a method for generating recurrent neural networks (RNN) for prediction of financial and macroeconomic time series are presented. In the presented method, a feedforward neural network (FFNN) is first obtained using backpropagation. While backpropagation is usually able to find a fairly good predictor, all FFNN are limited by their lack of short-term dynamic memory. RNNs, by con...
In this paper, we report on experiments in which we used neural networks for statistical anomaly intrusion detection systems. The five types of neural networks that we studied were: Perceptron; Backpropagation; PerceptronBackpropagation-Hybrid; Fuzzy ARTMAP; and Radial-Based Function. We collected four separate data sets from different simulation scenarios, and these data sets were used to test...
For many applications random access to data is critical to providing users with the level of efficiency necessary to make applications usable. It is also common to maintain data files in sequential order to allow batch processing of the data. This paper presents a method that uses a modified backpropagation neural network to locate records in a file randomly. The modifications necessary to the ...
Face Recognition System Based on Different Artificial Neural Networks Models and Training Algorithms
Face recognition is one of the biometric methods that is used to identify any given face image using the main features of this face. In this research, a face recognition system was suggested based on four Artificial Neural Network (ANN) models separately: feed forward backpropagation neural network (FFBPNN), cascade forward backpropagation neural network (CFBPNN), function fitting neural networ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید