نتایج جستجو برای: circular cylindrical shell
تعداد نتایج: 141703 فیلتر نتایج به سال:
Generally, thin cylindrical shells are susceptible for geometrical imperfections like non-circularity, non-cylindricity, dents, swellings etc. All these geometrical imperfections decrease the static buckling strength of thin cylindrical shells. In this work, neighbourhood effect of two circumferential short dents on the buckling behaviour of thin short stainless steel cylindrical shell is studi...
In this paper, the buckling behavior of a composite lattice cylindrical shell is studied and effects of rib defects on the distribution of stress field and buckling response of the shell is investigated. A three dimensional finite element buckling analysis of the lattice shell is carried out using ANSYS suit of program. Geometrical data and material properties of the shell are obtained from the...
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo- mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to ...
Low natural frequencies and vibration modes of the structure, consisting a closed circular cylindrical shell with end cap, having shape shallow spherical segment, are examined in paper using numerical asymptotic methods. There three types vibrations structure. Natural first type close to shell, second - those third cantilever beam load at end. In part research approximate values for found by As...
Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In ...
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-ba...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید