نتایج جستجو برای: compressed sampling

تعداد نتایج: 235888  

Journal: :International Journal of Signal Processing, Image Processing and Pattern Recognition 2013

2017
Guojun Qin Jingfang Wang

Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted from as little as possible of the data by applying CS, and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the struc...

2014
Caiyun Huang

Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted as little as possible of the data by applying CS and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure a...

Journal: :J. Complexity 2007
Ronald A. DeVore

Compressed sensing is a new area of signal processing. Its goal is to minimize the number of samples that need to be taken from a signal for faithful reconstruction. The performance of compressed sensing on signal classes is directly related to Gelfand widths. Similar to the deeper constructions of optimal subspaces in Gelfand widths, most sampling algorithms are based on randomization. However...

Journal: :IEICE Transactions 2010
Doohwan Lee Takayuki Yamada Hiroyuki Shiba Yo Yamaguchi Kazuhiro Uehara

To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer th...

2013
Ben Adcock Anders C. Hansen Clarice Poon Bogdan Roman

We introduce a mathematical framework that bridges a substantial gap between compressed sensing theory and its current use in applications. Although completely general, one of the principal applications for our framework is the Magnetic Resonance Imaging (MRI) problem. Our theory provides an explanation for the abundance of numerical evidence demonstrating the advantage of so-called variable de...

2013
Ben Adcock Anders C. Hansen Clarice Poon Bogdan Roman

This paper presents a framework for compressed sensing that bridges a gap between existing theory and the current use of compressed sensing in many real-world applications. In doing so, it also introduces a new sampling method that yields substantially improved recovery over existing techniques. In many applications of compressed sensing, including medical imaging, the standard principles of in...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید