نتایج جستجو برای: deep stacked extreme learning machine

تعداد نتایج: 978067  

2016
Ramzi Ben Ali Ridha Ejbali Mourad Zaied

Dental caries, also known as dental cavities, is the most widespread pathology in the world. Up to a very recent period, almost all individuals had the experience of this pathology at least once in their life. Early detection of dental caries can help in a sharp decrease in the dental disease rate. Thanks to the growing accessibility to medical imaging, the clinical applications now have better...

2013
Zuoguan Wang Siwei Lyu Gerwin Schalk Qiang Ji

Recent years have seen a great interest in using deep architectures for feature learning from data. One drawback of the commonly used unsupervised deep feature learning methods is that for supervised or semi-supervised learning tasks, the information in the target variables are not used until the final stage when the classifier or regressor is trained on the learned features. This could lead to...

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

2015
Sanyam Shukla R. N. Yadav

Extreme Learning Machine is a fast single layer feed forward neural network for real valued classification. It suffers from the problem of instability and over fitting. Voting based Extreme Learning Machine, VELM reduces this performance variation in Extreme Learning Machine by employing majority voting based ensembling technique. VELM improves the performance of ELM at the cost of increased re...

Journal: :Mathematical Problems in Engineering 2015

Journal: :CoRR 2017
Xiaofeng Xie Di Wu Siping Liu Renfa Li

Xiaofeng Xie, Di Wu, Siping Liu, Renfa Li Abstract: Deep learning is a popular machine learning approach which has achieved a lot of progress in all traditional machine learning areas. Internet of thing (IoT) and Smart City deployments are generating large amounts of time-series sensor data in need of analysis. Applying deep learning to these domains has been an important topic of research. The...

Journal: :CoRR 2016
Alexandre Alves

Machine learning (ML) algorithms have been employed in the problem of classifying signal and background events with high accuracy in particle physics. In this paper, we compare the performance of a widespread ML technique, namely, stacked generalization, against the results of two state-of-art algorithms: (1) a deep neural network (DNN) in the task of discovering a new neutral Higgs boson and (...

2006
Zhenzhen Kou William W. Cohen Robert F. Murphy

Traditional machine learning methods assume that instances are independent while in reality there are many relational datasets, such as hyperlinked web pages, scientific literatures with dependencies among citations, social networks, and more. Recent work on graphical models has demonstrated performance improvement on relational data. In my thesis I plan to study a meta-learning scheme called s...

Journal: :CoRR 2008
Mahesh Pal

This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (Engla...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید