نتایج جستجو برای: diabetic cardiomyopathy
تعداد نتایج: 147964 فیلتر نتایج به سال:
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of diabetic cardiomyopathy. Since cardiac hormone-sensitive lipase (HSL) is activated in diabetic mice, we sought to explore a pathophysiological function of cardiac HSL in the development of diabetic cardiomyopathy. Transgenic (Tg) mice with heart-specific HSL overexpression were generated, and cardiac his...
Diabetic cardiomyopathy increases the risk of heart failure in individuals with diabetes, independently of co-existing coronary artery disease and hypertension. The underlying mechanisms for this cardiac complication are incompletely understood. Research on rodent models of type 1 and type 2 diabetes, and the use of genetic engineering techniques in mice, have greatly advanced our understanding...
As obesity and type 2 diabetes are becoming an epidemic in westernized countries, the incidence and prevalence of obesity- and diabetes-related co-morbidities are increasing. In type 2 diabetes ectopic lipid accumulation in the heart has been associated with cardiac dysfunction and apoptosis, a process termed lipotoxicity. Since cardiovascular diseases are the main cause of death in diabetic pa...
Multiple factors have been shown to promote the progression of diabetic cardiomyopathy. A link has previously been found between Mir30 and autophagy in cancer cells and in the heart, but the role of Mir30 in diabetic heart has not been studied. Using in vitro and in vivo approaches, we found that the depletion of Mir30c and induction of BECN1 enhanced autophagy in diabetic (db/db) hearts and in...
BACKGROUND In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulat...
Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand ...
Post-translational modification of proteins with O-linked N-acetylglucosamine (O-GlcNAc) is linked the development of diabetic cardiomyopathy. We investigated whether Nkx2.5 protein, a cardiac transcription factor, is regulated by O-GlcNAc. Recombinant Nkx2.5 (myc-Nkx2.5) proteins were reduced by treatment with the O-GlcNAcase inhibitors STZ and O-(2-acetamido-2-deoxy-D-glucopyroanosylidene)-am...
The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings...
Article history: Received on: 21/08/2012 Revised on: 27/05/2013 Accepted on: 17/06/2013 Available online: 29/11/2013 Present study was designed to investigate the possible involvement of leptin in the pharmacological activation of Mas–receptor in STZ-diabetic rats, with cardiomyopathy. A single administration of STZ (50 mg/kg, i.p.) produced diabetes which leads to cardiomyopathy after 8 weeks....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید