The uniqueness theorem for the ergodic maximal operator is proved in the continuous case. Let (X, S, μ) be a finite measure space, μ(X) < ∞, (1) and let (Tt)t≥0 be an ergodic semigroup of measure-preserving transformations of (X, S, μ). As usual the map (x, t) → Ttx is assumed to be jointly measurable. For an integrable function f , f ∈ L(X), the ergodic maximal function f∗ is defined by equati...