نتایج جستجو برای: error back propagation algorithm

تعداد نتایج: 1172470  

2016
Arild Nøkland

Artificial neural networks are most commonly trained with the back-propagation algorithm, where the gradient for learning is provided by back-propagating the error, layer by layer, from the output layer to the hidden layers. A recently discovered method called feedback-alignment shows that the weights used for propagating the error backward don’t have to be symmetric with the weights used for p...

2016
Arild Nokland

Artificial neural networks are most commonly trained with the back-propagation algorithm, where the gradient for learning is provided by back-propagating the error, layer by layer, from the output layer to the hidden layers. A recently discovered method called feedback-alignment shows that the weights used for propagating the error backward don’t have to be symmetric with the weights used for p...

2008
Tahseen Ahmed Jilani Cemal Ardil

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...

2005
Giuseppe Nunnari Flavio Cannavó

In this paper a new Back-propagation algorithm appropriately studied for modelling air pollution time series is proposed. The underlying idea is that of modifying the error definition in order to improve the capability of the model to forecast episodes of poor air quality. In the paper five different expressions of error definition are proposed and their performances are rigorously evaluated in...

2004
Tahseen Ahmed Jilani Cemal Ardil

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...

2001
George Saikalis Feng Lin

In this paper, we propose an approach to adaptive neural network control by using a new adaptation algorithm. The algorithm is derived from the theory of adaptive interaction. The principle behind the adaptation algorithm is a simple but efficient methodology to perform gradient descent optimization in the parametric space. Unlike the approach based on the back-propagation algorithm, this appro...

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

2012
Kavita Burse Manish Manoria Vishnu P. S. Kirar

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of th...

1995
Amir A. Handzel

I review the recently developed Choice of Internal Representations (CHIR) training algorithm for multi-layer perceptrons, with an emphasis on relevant properties for hardware implementation. A comparison to the common error back-propagation algorithm shows that there are potential advantages in realizing CHIR in hard-

Background and Objectives: Rheological characteristics of dough are important for achieving useful information about raw-material quality, dough behavior during mechanical handling, and textural characteristics of products. Our purpose in the present research is to apply soft computation tools for predicting the rheological properties of dough out of simple measurable factors. Materials and Me...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید