نتایج جستجو برای: forward neural network ffnn
تعداد نتایج: 932379 فیلتر نتایج به سال:
In this paper, solution of generalized matrix Riccati differential equation (GMRDE) for indefinite stochastic linear quadratic singular system is obtained using neural networks. The goal is to provide optimal control with reduced calculus effort by comparing the solutions of GMRDE obtained from well known traditional Runge Kutta (RK) method and nontraditional neural network method. To obtain th...
A system that segments and labels tabla strokes from real performances is described. Performance is evaluated on a large database taken from three performers under different recording conditions, containing a total of 16,834 strokes. The current work extends previous work by Gillet and Richard (2003) on categorizing tabla strokes, by using a larger, more diverse database that includes their dat...
Monitoring system for induction motor is widely developed to detect the incipient fault. Such system is desirable to detect the fault at the running condition to avoid the motor stop running suddenly. In this paper, a new method for detection system is proposed that emphasizes the fault occurrences as temporary short circuit in induction motor winding. The investigation of fault detection is fo...
Feedforward neural networks (FFNN) have been utilised for various research in machine learning and they have gained a significantly wide acceptance. However, it was recently noted that the feedforward neural network has been functioning slower than needed. As a result, it has created critical bottlenecks among its applications. Extreme Learning Machines (ELM) were suggested as alternative learn...
This paper introduces a novel two-stream deep model based on graph convolutional network (GCN) architecture and feed-forward neural networks (FFNN) for learning the solution of nonlinear partial differential equations (PDEs). The aims at incorporating both grid input representations using two streams corresponding to GCN FFNN models, respectively. Each stream layer receives processes its repres...
Abstract Preventing plunge pool scouring in hydraulic structures is crucial engineering. Although many studies have been conducted experimentally to determine relationship between the scour depth and water jets several fields, available equations deficiencies calculating exact due complexity of process. This study investigated local using Metaheuristic Artificial Bee Colony-Optimized Feed Forwa...
<p>Predictive maintenance system (PdM) is a new concept that helps operators evaluate the current status of their systems, and it also assists in predicting future quality these systems scheduling action. This paper proposes PdM model utilizes machine learning to predict system’s operational after M active steps based on L previous observations implemented by feedforward neural network (F...
Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...
Due to remarkable capabilities of artificial neural networks (ANNs) such as generalization and nonlinear system modeling, ANNs have been extensively studied and applied in a wide variety of applications (Amiri et al., 2007; Davande et al., 2008). The rapid development of ANN technology in recent years has led to an entirely new approach for the solution of many data processing-based problems, u...
This work addresses an efficient neural network (NN) representation for the phase-field modeling of isotropic brittle fracture. In recent years, data-driven approaches, such as networks, have become active research field in mechanics. this contribution, deep networks—in particular, feed-forward (FFNN)—are utilized directly development failure model. The verification and generalization trained m...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید