نتایج جستجو برای: fuzzy regression analysis
تعداد نتایج: 3047549 فیلتر نتایج به سال:
This study provides a principal component analysis-fuzzy-support vector regression model for stock price prediction. Stocks with similar historical trends are selected using principal component analysis. Fuzzy information granulation is performed to construct a probability density for stock prices. Support vector regression is implemented to generate a regression function for future price predi...
Yu et al. (Fuzzy Sets and Systems 105 (1999) 429) performed general piecewise necessity regression analysis based on linear programming (LP) to obtain the necessity area. Their method is the same as that according to data distribution, even if the data are irregular, practitioners must specify the number and the positions of change-points. However, as the sample size increases, the number of ch...
logistic regression models are frequently used in clinicalresearch and particularly for modeling disease status and patientsurvival. in practice, clinical studies have several limitationsfor instance, in the study of rare diseases or due ethical considerations, we can only have small sample sizes. in addition, the lack of suitable andadvanced measuring instruments lead to non-precise observatio...
Change-points detection is one of important problems in data analysis. Traditional change-points detection method is based on exact data sets which can’t reflect prior information of data. In this paper, a new concept, called “fuzzy point data” which is defined by giving a fuzzy membership to the data in exact data sets, is proposed for helping us handle the confidence of data. We introduce reg...
This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming formulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two...
This communication is concerned with the problem of supervised classification of fuzzy data obtained from a random experiment. The data generation process is modelled through fuzzy random variables which, from a formal point of view, can be identified with a kind of functional random element. We propose to adapt one of the most versatile discriminant approaches in the context of functional data...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید