نتایج جستجو برای: g frame operator
تعداد نتایج: 625475 فیلتر نتایج به سال:
In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
If (fn) is a sequence of elements of an infinite dimensional Hilbert space H and (en) is an orthonormal basis for H , we define the preframe operator T : H → H by: Ten = fn. It follows that for any f ∈ H , T ∗f = ∑ n〈f, fn〉en. Hence, (fn) is a frame if and only if T ∗ is an isomorphism (called the frame transform) and in this case S = TT ∗ is an invertible operator on H called the frame operato...
This paper is concerned with the determination of optimal sensor locations for structural modal identification in a strap-braced cold formed steel frame based on an improved genetic algorithm (IGA). Six different optimal sensor placement performance indices have been taken as the fitness functions two based on modal assurance criterion (MAC), two based on maximization of the determinant of a Fi...
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.
in this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of hilbert $c^ast-$ modules and vice versa, then we consider tensor products of g-bessel multipliers, bessel multipliers and bessel fusion multipliers in hilbert $c^ast-$modules. moreover, we obtain so...
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید