نتایج جستجو برای: graph coloring problem
تعداد نتایج: 1030595 فیلتر نتایج به سال:
In this paper, we proposed an improved cuckoo search optimization (ICS) algorithm for solving planar graph coloring problem. The improved cuckoo search optimization algorithm is consisting of the walking one strategy, swap and inversion strategy and greedy strategy. The proposed improved cuckoo search optimization algorithm can solve the planar graph coloring problem using four-colors more effi...
We study the maximum differential coloring problem, where an n-vertex graph must be colored with colors numbered 1, 2...n such that the minimal difference between the two colors of any edge is maximized. This problem is motivated by coloring maps in which not all countries are contiguous. Since it is known that this problem is NP-hard for general graphs; we consider planar graphs and subclasses...
In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set Problems on an associated graph. We exploit the transformation proposed by C...
In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set Problems on an associated graph. We exploit the transformation proposed by C...
Planar graphs with $Δ\geq 7$ and no triangle adjacent to a C4 are minimally edge and total choosable
For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...
We present a branching scheme for some Vertex Coloring Problems based on a new graph operator called extension. The extension operator is used to generalize the branching scheme proposed by Zykov for the basic problem to a broad class of coloring problems, such as the graph multicoloring, where each vertex requires a multiplicity of colors, the graph bandwidth coloring, where the colors assigne...
The synchronizing word of a deterministic automaton is a word in the alphabet of colors (considered as letters) of its edges that maps the automaton to a single state. A coloring of edges of a directed graph is synchronizing if the coloring turns the graph into a deterministic finite automaton possessing a synchronizing word. The road coloring problem is the problem of synchronizing coloring of...
Greed is Good: Optimistic Algorithms for Bipartite-Graph Partial Coloring on Multicore Architectures
In parallel computing, a valid graph coloring yields a lock-free processing of the colored tasks, data points, etc., without expensive synchronization mechanisms. However, coloring is not free and the overhead can be significant. In particular, for the bipartite-graph partial coloring (BGPC) and distance-2 graph coloring (D2GC) problems, which have various use-cases within the scientific comput...
Register allocation has long been formulated as a graph coloring problem, coloring the conflict graph with physical registers. Such a formulation does not fully capture the goal of the allocation, which is to minimize the traffic between registers and memory. Linear scan has been proposed as an alternative to graph coloring, but in essence, it can be viewed as a greedy algorithm for graph color...
Finding a proper coloring of a t-colorable graph G with t colors is a classic NP-hard problem when t ≥ 3. In this work, we investigate the approximate coloring problem in which the objective is to find a proper c-coloring of G where c ≥ t. We show that for all t ≥ 3, it is NP-hard to find a c-coloring when c ≤ 2t− 2. In the regime where t is small, this improves, via a unified approach, the pre...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید