نتایج جستجو برای: hilbert space effect algebras
تعداد نتایج: 2148749 فیلتر نتایج به سال:
This paper reviews the theory of partial *-algebras of closable operators in Hilbert space (partial O*-algebras), with some emphasis on partial GW*-algebras. First we discuss the general properties and the various types of partial *-algebras and partial O*-algebras. Then we summarize the representation theory of partial *-algebras, including a generalized Gel'fand-Naimark-Segal construction; th...
In this paper, we study and classify Hilbert space representations of cross product ∗-algebras of the quantized enveloping algebra Uq(e2) with the coordinate algebras O(Eq(2)) of the quantum motion group and O(Cq) of the complex plane, and of the quantized enveloping algebra Uq(su1,1) with the coordinate algebras O(SUq(1, 1)) of the quantum group SUq(1, 1) and O(Uq) of the quantum disc. Invaria...
The C*-algebra of bounded operators on the separable Hilbert space cannot be mapped to a W*-algebra in such a way that each unital commutative C*-subalgebra C(X) factors normally through `∞(X). Consequently, there is no faithful functor discretizing C*-algebras to W*-algebras this way.
In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...
We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form k(s, u) = ∑ ann −s−ū, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert spaces to be “the same”, and introduce a notion of weak isomorphism. Many of the spaces we consider turn out to be weakly isomorphic as reproducing kernel Hil...
We answer, by counterexample, several open questions concerning algebras of operators on a Hilbert space. The answers add further weight to the thesis that, for many purposes, such algebras ought to be studied in the framework of operator spaces, as opposed to that of Banach spaces and Banach algebras. We also answer a natural question about automatic w*-continuity arising in the preceding pape...
We consider graded finitely presented algebras and modules over a field. Under some restrictions, the set of Hilbert series of such algebras (or modules) becomes finite. Claims of that types imply rationality of Hilbert and Poincare series of some algebras and modules, including periodicity of Hilbert functions of common (e.g., Noetherian) modules and algebras of linear growth.
According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theore...
Algebraic quantum mechanics is an abstraction and generalization of the Hilbert space formulation of quantum mechanics due to von Neumann [5]. In fact, von Neumann himself played a major role in developing the algebraic approach. Firstly, his joint paper [3] with Jordan and Wigner was one of the first attempts to go beyond Hilbert space (though it is now mainly of historical value). Secondly, h...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید