In this paper we prove that a finite partial commutative (idempotent commutative) Latin square can be embedded in a finite commutative (idempotent commutative) Latin square. These results are then used to show that the loop varieties defined by any non-empty subset of the identities {x(xy) = y, (yx)x = y} and the quasi-group varieties defined by any non-empty subset of {x” = x, x(xy) = y, (yx)x...