نتایج جستجو برای: incoherence dictionary learning
تعداد نتایج: 618286 فیلتر نتایج به سال:
In dictionary learning for analysis of images, spatial correlation from extracted patches can be leveraged to improve characterization power. We propose a Bayesian framework for dictionary learning, with spatial location dependencies captured by imposing a multiplicative Gaussian process (GP) priors on the latent units representing binary activations. Data augmentation and Kronecker methods all...
Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patchbased dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the in...
We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one clu...
In dictionary learning for analysis of images, spatial correlation from extracted patches can be leveraged to improve characterization power. We propose a Bayesian framework for dictionary learning, where spatial location dependencies are captured by imposing a multiplicative Gaussian process prior on the latent units representing binary activations. Data augmentation and Kronecker methods allo...
In dictionary learning for analysis of images, spatial correlation from extracted patches can be leveraged to improve characterization power. We propose a Bayesian framework for dictionary learning, where spatial location dependencies are captured by imposing a multiplicative Gaussian process prior on the latent units representing binary activations. Data augmentation and Kronecker methods allo...
Structured sparse coding and the related structured dictionary learning problems are novel research areas in machine learning. In this paper we present a new application of structured dictionary learning for collaborative filtering based recommender systems. Our extensive numerical experiments demonstrate that the presented method outperforms its state-of-the-art competitors and has several adv...
This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into...
Automatic correction of typos in the typed texts is one of the goals of research in artificial intelligence, data mining and natural language processing. Most of the existing methods are based on searching in dictionaries and determining the similarity of the dictionary entries and the given word. This paper presents the design, implementation, and evaluation of a Farsi typo correction system u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید