نتایج جستجو برای: integrable 2times 2 matrix

تعداد نتایج: 2811004  

2008
Tomaž Prosen Marko Žnidarič

Time-dependent density matrix renormalization group method with a matrix product ansatz is employed for explicit computation of non-equilibrium steady state density operators of several integrable and non-integrable quantum spin chains, which are driven far from equilibrium by means of Markovian couplings to external baths at the two ends. It is argued that even though the time-evolution can no...

2005
N. Beisert

Quantum spin chains arise naturally from perturbative large-N field theories and matrix models. The Hamiltonian of such a model is a long-range deformation of nearest-neighbor type interactions. Here, we study the most general long-range integrable spin chain with spins transforming in the fundamental representation of gl(n). We derive the Hamiltonian and the corresponding asymptotic Bethe ansa...

2002
Zhijun Qiao

The purpose of this paper is to construct a generalized r-matrix structure of finite dimensional systems and an approach to obtain the algebro-geometric solutions of integrable nonlinear evolution equations (NLEEs). Our starting point is a generalized Lax matrix instead of usual Lax pair. The generalized r-matrix structure and Hamiltonian functions are presented on the basis of fundamental Pois...

1999
J. M. MAILLET

A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0) = P , the permutation op...

2012
Wenxiu MA W. X. Ma

A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the s...

2008
A. M. Kamchatnov

Whitham theory of modulations is developed for periodic waves described by nonlinear wave equations integrable by the inverse scattering transform method associated with 2 × 2 matrix or second order scalar spectral problems. The theory is illustrated by derivation of the Whitham equations for perturbed Korteweg-de Vries equation and nonlinear Schrödinger equation with linear damping.

2009
Maria Przybylska

We consider natural complex Hamiltonian systems with n degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential V of degree k > 2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each k there exists an explicitly k...

2012
Wen-Xiu Ma Jinghan Meng Huiqun Zhang

We discuss Hamiltonian formulations for integrable couplings, particularly biand tri-integrable couplings, based on zero curvature equations. The basic tools are the variational identities over non-semisimple Lie algebras consisting of block matrices. Illustrative examples include dark equations and biand tri-integrable couplings of the KdV equation and the AKNS equations, generated from the en...

Journal: :Computers & Mathematics with Applications 2010
Wen-Xiu Ma Zuo-Nong Zhu

Beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing nonlinear discrete integrable couplings. Discrete variational identities over the associated loop algebras are used to build Hamiltonian structures for the resulting integrable couplings. We illustrate the application of the scheme by means of an enlargedVolterra spectral problemandp...

Journal: :Mathematics and Computers in Simulation 2016
Wen-Xiu Ma Jinghan Meng Mengshu Zhang

Bi-integrable couplings of soliton equations are presented through introducing non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms. The corresponding variational identity yields Hamiltonian structures of the resulting bi-integrable couplings. An application to the AKNS spectral problem gives bi-integrable couplings with Hamiltonian s...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید