We show that noncommutative differential forms on k[x], k a field, are of the form Ω1 = kλ[x] where kλ ⊇ k is a field extension. We compute the case C ⊃ R explicitly, where Ω1 is 2-dimensional. We study the induced quantum de Rahm complex Ω and its cohomology associated to a field extension, as well as gauge theory.